

Liquid Crystal Institute® Chemical Physics Interdisciplinary Program

Determination of refractive indices of liquid crystal elastomer

Israel Lazo, Jeremy Neal and Peter Palffy-Muhoray Liquid Crystal Institute, Kent State University, Kent OH, 44242

Motivation and Objectives

- Understand the physical properties of this new materials
- Measure the individual refractive indices of a nematic liquid crystal elastomer
- Determine how this refractive indices change as a function of strain

LC elastomer

Mesogen

Backbone

Crosslinker

American Physical Society 2008

Refractive indices

Techniques:

Brewster's angle measurement Interferometry

Brewster's angle

Schematic diagram of the experimental setup for Brewster's angle measurements

American Physical Society 2008

Brewster's angle (Model)

Mathematical model

Results

Experimental results for Brewster's angle technique

American Physical Society 2008

Interferometry

Schematic diagram of the experimental setup for conoscopic interferometer

American Physical Society 2008

Interferometer

Phase shift

$$\Delta \varphi = \frac{2\pi d}{\lambda} \int n_2 - \cos \theta_i + \sqrt{n_2^2 - \sin^2 \theta_i}$$

Ordinary refractive index $n_0 \rightarrow n_2$

Special consideration must be taken when calculating n_e

$$n_2 = \frac{n_e n_o}{\sqrt{n_e^2 \sin^2 \theta_2 + n_o^2 \cos^2 \theta_2}}$$
$$\theta_2 = \tan^{-1} \left\{ \sqrt{\frac{n_o^2}{\left(\frac{n_o n_e}{\sin \theta_i}\right)^2 - n_e^2}} \right\}$$

Experimental results for Interferometer and Brewster's angle techniques

Conclusion

We have measured the ordinary and extraordinary refractive indices of a nematic liquid crystal elastomer using two different methods

Two methods are in a good agreement

To do Confirm and interpret the results.

Data: Sheet1_I Model: interference Equation: A*exp(-0.5*((x-xc)/w)^2)*B*cos(x^2*a/b)^2 Weighting:		
У	No weighting	
Chi^2/DoF = 0.03788 R^2 = 0.42984		
А	0.72524	±0
w	-414.23236	±0
хс	19.62006	±0
в	2153.78282	±0
а	0.00583	±0.00024
b	237.34718	±9.94937