

An Artificial Light Driven Goldfish

Jeremy Neal Peter Palffy-Muhoray Tibor Toth-Katona Liquid Crystal Institute Kent State University Kent, OH

Heino Finkelmann

Institute fur Macromoleculare Chemie, Albert-Ludwigs Universitat, Freiburg, Germany

Michael Shelley

Courant Institute of Mathematical Sciences, New York University, NY

Work supported by NSF-EC DMR 0132611

March 21, 2005

Project Aims:

 to understand how soft active materials interact with a fluid environment as in:

- folding & motion of leaves in wind
- fish swimming in water
- peristaltic pumps

• to better understand of the interaction between light and liquid crystal elastomer (LCE) materials

March 21, 2005

Liquid Crystal Elastomers

• LCE: liquid crystal rubber

- strong coupling between nematic order and mechanical strain
- order parameter changes induce shape changes
- light can change the order parameter, resulting in shape changes

March 21, 2005

Light Induced Order Parameter Changes

Light can change the order parameter via:

- direct heating of the sample
- disruption of nematic order due to photoisomerization
- direct optical torque due to direct angular momentum transfer from the light
- indirect optical torque

All these mechanisms could be contributing.

March 21, 2005

LCE Composition

 methylsiloxane monomer (main chain)

 mesogenic biphenyl (side group)

trifunctional crosslinker

March 21, 2005

Our LCE Materials

samples have the following properties:

- nematic monodomain
- 8 12% cross-linking
- 0.1% dissolved azo-dye

Typical LCE sample size.

March 21, 2005

Azo-Dyes

- contain a N = N double bond connecting aromatic benzene rings
- undergo photoisomerization, from the trans- to cisconfiguration on absorption of a photon
- align with the nematic director
- are dissolved in our LCEs to aid in light absorption

Light Induced Bending of LCEs

 laser illumination causes the elastomer to bend towards the beam, as shown

March 21, 2005

Experiment

 sample immersed in rheoscopic fluid, which allows for flow visualization

 sample is illuminated alternately on both sides by light at 514nm from Ar laser

March 21, 2005

Experimental Results

Fluid velocities for various elastomer driving excitations

- highest pumping rates are achieved with the shortest delay time between laser pulses
- all curves peak near the same exposure time of 700 ms
 March Meeting of the APS
 March 21, 2005

Momentum Transfer

- laser light provides energy to the LCE, but not momentum
- energy transfer induces a stress in the LCE sample, causing it to bend.
- bending of the elastomer sample transfers momentum to the surrounding fluid
- fluid transfers momentum to the LCE sample
- This is similar to a conventional motor, where energy is used to cause momentum transfer.

March 21, 2005

Drag Reduction

Grey's Paradox*: actively swimming fish experience a significant drag reduction through the swimming process

- possibly due to
 - viscous damping by fluid cells under the skin
 - swimming motion
- we would like to determine if soft active materials can lead to a drag reduction
- could lead to new applications such as
 - soft active materials to coat boats for reduced energy consumption

* Gray, J. Studies in animal locomotion, *J. Exp. Biol.* 13, pp. 192-199 (1936). March Meeting of the APS Los Angeles, CA

Conclusions

- laser supplies energy to the system which results in momentum transfer between fish & surrounding fluid
- fluid is pumped backwards
- results of this experiment will be compared with modeling
- expect new insight into soft active materials

Future work

 design experiment to determine if drag reduction is present in our system

March 21, 2005